GRATIS
Harvard vía Coursera
GRATIS

Data Processing and Feature Engineering with MATLAB

  • money

    Cursos gratis (Auditar)

    question-mark
  • earth

    Inglés

  • folder

    Siempre Abierto

  • certificate

    Guía de Registro en Coursera

    arrow
Acerca de este curso

  • Surveying Your Data
    • In this module you'll apply the skills gained in Exploratory Data Analysis with MATLAB on a new dataset. You'll explore different types of distributions and calculate quantities like the skewness and interquartile range. You'll also learn about more types of plots for visualizing multi-dimensional data.
  • Organizing Your Data
    • In this module you'll learn to prepare data for analysis. Often data is not recorded as required. You'll learn to manipulate string variables to extract key information. You'll create a single datetime variable from date and time information spread across multiple columns in a table. You'll efficiently load and combine data from multiple files to create a final table for analysis.
  • Cleaning Your Data
    • In this module you'll clean messy data. Missing data, outliers, and variables with very different scales can obscure trends in the data. You'll find and address missing data and outliers in a data set. You'll compare variables with different scales by normalizing variables.
  • Finding Features that Matter
    • In this module you'll create new features to better understand your data. You'll evaluate features to determine if a feature is potentially useful for making predictions.
  • Domain-Specific Feature Engineering
    • In this module you'll apply the concepts from Modules 1 through 4 to different domains. You'll create and evaluate features using time-based signals such as accelerometer data from a cell phone. You'll use Apps in MATLAB to perform image processing and create features based on segmented images. You'll also use text processing techniques to find features in unstructured text.