Tensorflow 2 と Keras Sequential API を使用したニューラル ネットワークのトレーニング
このモジュールでは、Keras Sequential API を使用して TensorFlow モデルを記述することを学びます。ただし、モデルの記述の前に、活性化関数、損失、および最適化について学びます。次に、Keras Sequential API を使用してディープ ラーニング モデルを作成する方法を学びます。クラウドに予測モデルをデプロイする方法についても学びます。
Tensorflow 2 と Keras Functional API を使用したニューラル ネットワークのトレーニング
Sequential モデル API はほとんどのディープ ラーニング モデルの開発に適していますが、制約がいくつかあります。その一例を挙げると、入力ソースが複数あるモデル、出力先が複数になるモデル、レイヤを再利用するモデルを定義するのは単純ではありません。Keras Functional API は tf.keras.Sequential API より柔軟にモデルを作成する手段です。Functional API は非線形トポロジのモデル、レイヤを共有するモデル、入力または出力が複数あるモデルに対応できます。Keras Functional API ではモデルを柔軟に定義できます。特に、入力または出力が複数あるモデルや、レイヤを共有するモデルを定義できます。アドホックの非巡回ネットワーク グラフを定義することもできます。大抵のディープ ラーニング モデルの主な目的は、レイヤの有向非巡回グラフ(DAG)です。Functional API はレイヤのグラフを作成する手段です。モデルのパフォーマンス向上に役立つ正則化についても学びます。
まとめ
このコースでこれまでに取り上げた TensorFlow のトピックをここでまとめます。コア TensorFlow コード、tf.data API、Keras Sequential API、および Keras Functional API について復習し、最後には Cloud AI Platform での機械学習モデルのスケーリングについて取り上げます。