Se estudiará cómo configurar su aplicación de aprendizaje automático, separando los sets de entrenamiento y testeo. Se entenderá que es la regularización en una red neuronal y cómo definir el problema para poder optimizarlo.
Algoritmos de Optimización
Se estudiarán los distintos métodos de optimización que se pueden utilizar en el entrenamiento de redes neuronales profundas. Además, se analizarán las ventajas de trabajar con minibatches para acelerar el proceso y los beneficios de aplicar una diminución progresiva a la tasa de aprendizaje.
Ajuste de Hiperparámetros, Normalización por lotes e implementación en Tensorflow
Se aprenderán las principales técnicas y opciones en el ajuste de Hiperparámetros, la normalización por lotes y se introducirá la librería Tensorflow para la implementación de redes neuronales en Python